Python: tokenize.py Updated

#!/usr/bin/env python

"""
Tokenization is the process of breaking a stream of text up into words, phrases,
symbols, or other meaningful elements called tokens. The list of tokens becomes
input for further processing such as parsing or text mining. -- Wikipedia
"""

import re
import nltk.corpus

def tokenize(**kw):
    """ Tokenize string data """
    # Defaults
    kw.setdefault('text', None)
    kw.setdefault('min_len', 4)
    kw.setdefault('ignore_list', [])
    kw.setdefault('filter_stopwords', False)
    kw.setdefault('filter_plainwords', False)

    if  kw['text'] == None:
        return None

    if not kw['filter_stopwords'] == False:
        kw['ignore_list'] += nltk.corpus.stopwords.words()

    if  kw['filter_plainwords'] == True:
        plain_words = nltk.corpus.abc.words()
    else:
        plain_words = []

    matches = set(re.findall('([A-z]+)+', kw['text']))

    tokens = set([token.lower() for token in matches
                  if token not in kw['ignore_list']
                  and len(token) >= kw['min_len']])

    if not kw['filter_plainwords']:
        return tokens
    else:
        return tokens.intersection(plain_words)

def test():
    """ tokenize() test """
    import requests
    text = raw_input("path or url to string data > ")
    if not text.startswith('http'):
        text = open(text, 'r').read()
    else:
        text = requests.get(text).content
    print tokenize(text=text,
                   min_len=4,
                   ignore_list=['code'],
                   filter_plainwords=True,
                   filter_stopwords=True)


## TESTING tokenize
if __name__ == '__main__':
    test()
 
More information on nltk can be found at www.nltk.org 
A review of this script can be found here Code Review